Replacing the Axial Ligand Tyrosine 75 or Its Hydrogen Bond Partner Histidine 83 Minimally Affects Hemin Acquisition by the Hemophore HasAp from Pseudomonas aeruginosa
نویسندگان
چکیده
Hemophores from Pseudomonas aeruginosa (HasAp), Serratia marcescens (HasAsm), and Yersinia pestis (HasAyp) bind hemin between two loops. One of the loops harbors conserved axial ligand Tyr75 (Y75 loop) in all three structures, whereas the second loop (H32 loop) contains axial ligand His32 in HasAp and HasAsm, but a noncoordinating Gln32 in HasAyp. Binding of hemin to the Y75 loop of HasAp or HasAsm causes a large rearrangement of the H32 loop that allows His32 coordination. The Q32 loop in apo-HasAyp is already in the closed conformation, such that binding of hemin to the conserved Y75 loop occurs with minimal structural rearrangement and without coordinative interaction with the Q32 loop. In this study, structural and spectroscopic investigations of the hemophore HasAp were conducted to probe (i) the role of the conserved Tyr75 loop in hemin binding and (ii) the proposed requirement of the His83-Tyr75 hydrogen bond to allow the coordination of hemin by Tyr75. High-resolution crystal structures of H83A holo-HasAp obtained at pH 6.5 (0.89 Å) and pH 5.4 (1.25 Å) show that Tyr75 remains coordinated to the heme iron, and that a water molecule can substitute for Nδ of His83 to interact with the Oη atom of Tyr75, likely stabilizing the Tyr75-Fe interaction. Nuclear magnetic resonance spectroscopy revealed that in apo-Y75A and apo-H83A HasAp, the Y75 loop is disordered, and that disorder propagates to nearby elements of secondary structure, suggesting that His83 Nδ-Tyr75 Oη interaction is important to the organization of the Y75 loop in apo-HasA. Kinetic analysis of hemin loading conducted via stopped-flow UV-vis and rapid-freeze-quench resonance Raman shows that both mutants load hemin with biphasic kinetic parameters that are not significantly dissimilar from those previously observed for wild-type HasAp. When the structural and kinetic data are taken together, a tentative model emerges, which suggests that HasA hemophores utilize hydrophobic, π-π stacking, and van der Waals interactions to load hemin efficiently, while axial ligation likely functions to slow hemin release, thus allowing the hemophore to meet the challenge of capturing hemin under inhospitable conditions and delivering it selectively to its cognate receptor.
منابع مشابه
Replacing Arginine 33 for Alanine in the Hemophore HasA from Pseudomonas aeruginosa Causes Closure of the H32 Loop in the Apo-Protein.
Previous characterization of hemophores from Serratia marcescens (HasAs), Pseudomonas aeruginosa (HasAp), and Yersinia pestis (HasAyp) showed that hemin binds between two loops, where it is axially coordinated by H32 and Y75. The Y75 loop is structurally conserved in all three hemophores and harbors conserved ligand Y75. The other loop contains H32 in HasAs and HasAp, but a noncoordinating Q32 ...
متن کاملHydrogen Bond Control of Active Oxidizing Species in Manganese Porphyrin Hydroxylation Catalysts
Some meso-tetra aryl porphyrinato manganese (III) acetate or chloride complexes including meso-tetraphenyl porphyrinato manganese (III) chloride (TPPMnCl), meso-tetrakis(2,3-dimethoxyphenyl)porphyrinato manganese(III) acetate, (T(2,3-OMeP)PMnOAc) and meso-tetrakis(pentaflourophenyl)porphyrinato manganese (III) acetate (TPFPPMnOAc) were synthesized. These porphyrins were used as catalyst in the ...
متن کاملThe hemophore HasA from Yersinia pestis (HasAyp) coordinates hemin with a single residue, Tyr75, and with minimal conformational change.
Hemophores from Serratia marcescens (HasA(sm)) and Pseudomonas aeruginosa (HasA(p)) bind hemin between two loops, which harbor the axial ligands H32 and Y75. Hemin binding to the Y75 loop triggers closing of the H32 loop and enables binding of H32. Because Yersinia pestis HasA (HasA(yp)) presents a Gln at position 32, we determined the structures of apo- and holo-HasA(yp). Surprisingly, the Q32...
متن کاملAn investigation of the ligand-binding properties of Pseudomonas aeruginosa nitrite reductase.
The low-temperature e.p.r. and m.c.d. (magnetic-circular-dichroism) spectra of Pseudomonas aeruginosa nitrite reductase, together with those of its partially and fully cyanide-bound derivatives, were investigated. The m.c.d. spectra in the range 600-2000 nm indicate that the native axial ligands to haem c are histidine and methionine, and furthermore that it is the methionine ligand that must b...
متن کاملRequirement of the Pseudomonas aeruginosa tonB gene for high-affinity iron acquisition and infection.
To investigate the contribution of the TonB protein to high-affinity iron acquisition in Pseudomonas aeruginosa, we constructed tonB-inactivated mutants from strain PAO1 and its derivative deficient in producing the siderophores pyoverdin and pyochelin. The tonB mutants could not grow in a free-iron-restricted medium prepared by apotransferrin addition, even though the medium was supplemented w...
متن کامل